2013-08-23 5 views
13

Ich entwickle eine einfache 3D-Engine (ohne API-Verwendung), verwandelte meine Szene erfolgreich in Welt und Ansichtsraum, habe aber Schwierigkeiten, meine Szene (vom Ansichtsbereich) mit der Perspektive zu projizieren Projektionsmatrix (OpenGL-Stil). Ich bin nicht sicher über die fov, nah und fern Werte und die Szene, die ich bekomme, ist verzerrt. Ich hoffe, wenn mir jemand mich leiten kann, wie man die perspektivische Projektionsmatrix mit Beispielcodes richtig baut und verwendet. Vielen Dank im Voraus für jede Hilfe.Wie erstellt man eine perspektivische Projektionsmatrix (keine API)

Die Matrix build:

double f = 1/Math.Tan(fovy/2); 
return new double[,] { 

    { f/Aspect, 0, 0, 0 }, 
    { 0, f, 0, 0 }, 
    { 0, 0, (Far + Near)/(Near - Far), (2 * Far * Near)/(Near - Far) }, 
    { 0, 0, -1, 0 } 
}; 

Die Matrix Verwendung:

foreach (Point P in T.Points) 
{  
    . 
    .  // Transforming the point to homogen point matrix, to world space, and to view space (works fine) 
    .  

    // projecting the point with getProjectionMatrix() specified in the previous code :  

    double[,] matrix = MatrixMultiply(GetProjectionMatrix(Fovy, Width/Height, Near, Far) , viewSpacePointMatrix); 

    // translating to Cartesian coordinates (from homogen): 

    matrix [0, 0] /= matrix [3, 0]; 
    matrix [1, 0] /= matrix [3, 0]; 
    matrix [2, 0] /= matrix [3, 0]; 
    matrix [3, 0] = 1; 
    P = MatrixToPoint(matrix); 

    // adjusting to the screen Y axis: 

    P.y = this.Height - P.y; 

    // Printing... 
} 
+0

http://www.scratchapixel.com/lessons/3d-basic-rendering/Perspektive-und-orthographische-Projektions-Matrix Ich empfehle auch die vorherigen Lektionen (Projektionspunkte und 3D-Ansicht). – user18490

Antwort

23

Folgende ist eine typische Implemenation der Matrix perspektivische Projektion. Und hier ist eine gute Verbindung alles OpenGL Projection Matrix

void ComputeFOVProjection(Matrix& result, float fov, float aspect, float nearDist, float farDist, bool leftHanded /* = true */) 
{ 
    // 
    // General form of the Projection Matrix 
    // 
    // uh = Cot(fov/2) == 1/Tan(fov/2) 
    // uw/uh = 1/aspect 
    // 
    // uw   0  0  0 
    // 0  uh  0  0 
    // 0   0  f/(f-n) 1 
    // 0   0 -fn/(f-n) 0 
    // 
    // Make result to be identity first 

    // check for bad parameters to avoid divide by zero: 
    // if found, assert and return an identity matrix. 
    if (fov <= 0 || aspect == 0) 
    { 
     Assert(fov > 0 && aspect != 0); 
     return; 
    } 

    float frustumDepth = farDist - nearDist; 
    float oneOverDepth = 1/frustumDepth; 

    result[1][1] = 1/tan(0.5f * fov); 
    result[0][0] = (leftHanded ? 1 : -1) * result[1][1]/aspect; 
    result[2][2] = farDist * oneOverDepth; 
    result[3][2] = (-farDist * nearDist) * oneOverDepth; 
    result[2][3] = 1; 
    result[3][3] = 0; 
} 
+0

Sehr hilfreich, danke –

+0

Sorry aber was ist uh und du hier? Benutzerbreite und Benutzerhöhe? – ReX357

+2

@ ReX357 uw = nahe/rechts und uh = nahe/oben, wo rechts die Koordinaten des rechten Clip-Plans und oben die Koordinaten der oberen Clip-Ebene sind. Da die obige perspektivische Projektion symmetrisch ist, also rechts = Hälfte der Horizontbreite und oben = Hälfte der vertikalen Höhe, dann wird uw/uh = oben/rechts = Höhe/Breite = 1/Aspekt –

0

Eine weitere Funktion zu erklären, die nützlich sein können.

Dieses basiert auf der linken/rechten/oberen/unteren/Nah/Fern-Parameter (in OpenGL verwendet):

static void test(){ 
    float projectionMatrix[16]; 

    // width and height of viewport to display on (screen dimensions in case of fullscreen rendering) 
    float ratio = (float)width/height; 
    float left = -ratio; 
    float right = ratio; 
    float bottom = -1.0f; 
    float top = 1.0f; 
    float near = -1.0f; 
    float far = 100.0f; 

    frustum(projectionMatrix, 0, left, right, bottom, top, near, far); 

} 

static void frustum(float *m, int offset, 
        float left, float right, float bottom, float top, 
        float near, float far) { 

    float r_width = 1.0f/(right - left); 
    float r_height = 1.0f/(top - bottom); 
    float r_depth = 1.0f/(far - near); 
    float x = 2.0f * (r_width); 
    float y = 2.0f * (r_height); 
    float z = 2.0f * (r_depth); 
    float A = (right + left) * r_width; 
    float B = (top + bottom) * r_height; 
    float C = (far + near) * r_depth; 
    m[offset + 0] = x; 
    m[offset + 3] = -A; 
    m[offset + 5] = y; 
    m[offset + 7] = -B; 
    m[offset + 10] = -z; 
    m[offset + 11] = -C; 
    m[offset + 1] = 0.0f; 
    m[offset + 2] = 0.0f; 
    m[offset + 4] = 0.0f; 
    m[offset + 6] = 0.0f; 
    m[offset + 8] = 0.0f; 
    m[offset + 9] = 0.0f; 
    m[offset + 12] = 0.0f; 
    m[offset + 13] = 0.0f; 
    m[offset + 14] = 0.0f; 
    m[offset + 15] = 1.0f; 

} 
Verwandte Themen