2017-11-02 4 views
1

Ist dies der richtige Linux-Kernel-Code zu ändern - wie kann ich die Änderung CPUID-Code zu emulieren und welche Funktion muss ich ändern. dankeWie oder welche Datei im CPUID-Emulationscode in KVM ändern, um eine fiktive Prozessormarkenkette (CPUID-Blatt 0x0) zurückzumelden?

#include <linux/kvm_host.h> 
#include <linux/export.h> 
#include <linux/vmalloc.h> 
#include <linux/uaccess.h> 
#include <linux/sched/stat.h> 

#include <asm/processor.h> 
#include <asm/user.h> 
#include <asm/fpu/xstate.h> 
#include "cpuid.h" 
#include "lapic.h" 
#include "mmu.h" 
#include "trace.h" 
#include "pmu.h" 

static u32 xstate_required_size(u64 xstate_bv, bool compacted) 
{ 
    int feature_bit = 0; 
    u32 ret = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET; 

    xstate_bv &= XFEATURE_MASK_EXTEND; 
    while (xstate_bv) { 
     if (xstate_bv & 0x1) { 
       u32 eax, ebx, ecx, edx, offset; 
       cpuid_count(0xD, feature_bit, &eax, &ebx, &ecx, &edx); 
      offset = compacted ? ret : ebx; 
      ret = max(ret, offset + eax); 
     } 

     xstate_bv >>= 1; 
     feature_bit++; 
    } 

    return ret; 
} 

bool kvm_mpx_supported(void) 
{ 
    return ((host_xcr0 & (XFEATURE_MASK_BNDREGS | XFEATURE_MASK_BNDCSR)) 
     && kvm_x86_ops->mpx_supported()); 
} 
EXPORT_SYMBOL_GPL(kvm_mpx_supported); 

u64 kvm_supported_xcr0(void) 
{ 
    u64 xcr0 = KVM_SUPPORTED_XCR0 & host_xcr0; 

    if (!kvm_mpx_supported()) 
     xcr0 &= ~(XFEATURE_MASK_BNDREGS | XFEATURE_MASK_BNDCSR); 

    return xcr0; 
} 

#define F(x) bit(X86_FEATURE_##x) 

/* These are scattered features in cpufeatures.h. */ 
#define KVM_CPUID_BIT_AVX512_4VNNIW  2 
#define KVM_CPUID_BIT_AVX512_4FMAPS  3 
#define KF(x) bit(KVM_CPUID_BIT_##x) 

int kvm_update_cpuid(struct kvm_vcpu *vcpu) 
{ 
    struct kvm_cpuid_entry2 *best; 
    struct kvm_lapic *apic = vcpu->arch.apic; 

    best = kvm_find_cpuid_entry(vcpu, 1, 0); 
    if (!best) 
     return 0; 

    /* Update OSXSAVE bit */ 
    if (boot_cpu_has(X86_FEATURE_XSAVE) && best->function == 0x1) { 
     best->ecx &= ~F(OSXSAVE); 
     if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE)) 
      best->ecx |= F(OSXSAVE); 
    } 

    best->edx &= ~F(APIC); 
    if (vcpu->arch.apic_base & MSR_IA32_APICBASE_ENABLE) 
     best->edx |= F(APIC); 

    if (apic) { 
     if (best->ecx & F(TSC_DEADLINE_TIMER)) 
      apic->lapic_timer.timer_mode_mask = 3 << 17; 
     else 
      apic->lapic_timer.timer_mode_mask = 1 << 17; 
    } 

    best = kvm_find_cpuid_entry(vcpu, 7, 0); 
    if (best) { 
     /* Update OSPKE bit */ 
     if (boot_cpu_has(X86_FEATURE_PKU) && best->function == 0x7) { 
      best->ecx &= ~F(OSPKE); 
      if (kvm_read_cr4_bits(vcpu, X86_CR4_PKE)) 
       best->ecx |= F(OSPKE); 
     } 
    } 

    best = kvm_find_cpuid_entry(vcpu, 0xD, 0); 
    if (!best) { 
     vcpu->arch.guest_supported_xcr0 = 0; 
     vcpu->arch.guest_xstate_size = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET; 
    } else { 
     vcpu->arch.guest_supported_xcr0 = 
      (best->eax | ((u64)best->edx << 32)) & 
      kvm_supported_xcr0(); 
     vcpu->arch.guest_xstate_size = best->ebx = 
      xstate_required_size(vcpu->arch.xcr0, false); 
    } 

    best = kvm_find_cpuid_entry(vcpu, 0xD, 1); 
    if (best && (best->eax & (F(XSAVES) | F(XSAVEC)))) 
     best->ebx = xstate_required_size(vcpu->arch.xcr0, true); 

    /* 
    * The existing code assumes virtual address is 48-bit or 57-bit in the 
    * canonical address checks; exit if it is ever changed. 
    */ 
    best = kvm_find_cpuid_entry(vcpu, 0x80000008, 0); 
    if (best) { 
     int vaddr_bits = (best->eax & 0xff00) >> 8; 

     if (vaddr_bits != 48 && vaddr_bits != 57 && vaddr_bits != 0) 
      return -EINVAL; 
    } 

    /* Update physical-address width */ 
    vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu); 
    kvm_mmu_reset_context(vcpu); 

    kvm_pmu_refresh(vcpu); 
    return 0; 
} 

static int is_efer_nx(void) 
{ 
    unsigned long long efer = 0; 

    rdmsrl_safe(MSR_EFER, &efer); 
    return efer & EFER_NX; 
} 

static void cpuid_fix_nx_cap(struct kvm_vcpu *vcpu) 
{ 
    int i; 
    struct kvm_cpuid_entry2 *e, *entry; 

    entry = NULL; 
    for (i = 0; i < vcpu->arch.cpuid_nent; ++i) { 
     e = &vcpu->arch.cpuid_entries[i]; 
     if (e->function == 0x80000001) { 
      entry = e; 
      break; 
     } 
    } 
    if (entry && (entry->edx & F(NX)) && !is_efer_nx()) { 
     entry->edx &= ~F(NX); 
     printk(KERN_INFO "kvm: guest NX capability removed\n"); 
    } 
} 

int cpuid_query_maxphyaddr(struct kvm_vcpu *vcpu) 
{ 
    struct kvm_cpuid_entry2 *best; 

    best = kvm_find_cpuid_entry(vcpu, 0x80000000, 0); 
    if (!best || best->eax < 0x80000008) 
     goto not_found; 
    best = kvm_find_cpuid_entry(vcpu, 0x80000008, 0); 
    if (best) 
     return best->eax & 0xff; 
not_found: 
    return 36; 
} 
EXPORT_SYMBOL_GPL(cpuid_query_maxphyaddr); 

/* when an old userspace process fills a new kernel module */ 
int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu, 
       struct kvm_cpuid *cpuid, 
       struct kvm_cpuid_entry __user *entries) 
{ 
    int r, i; 
    struct kvm_cpuid_entry *cpuid_entries = NULL; 

    r = -E2BIG; 
    if (cpuid->nent > KVM_MAX_CPUID_ENTRIES) 
     goto out; 
    r = -ENOMEM; 
    if (cpuid->nent) { 
     cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry) * 
        cpuid->nent); 
     if (!cpuid_entries) 
      goto out; 
     r = -EFAULT; 
     if (copy_from_user(cpuid_entries, entries, 
        cpuid->nent * sizeof(struct kvm_cpuid_entry))) 
      goto out; 
    } 
    for (i = 0; i < cpuid->nent; i++) { 
     vcpu->arch.cpuid_entries[i].function = cpuid_entries[i].function; 
     vcpu->arch.cpuid_entries[i].eax = cpuid_entries[i].eax; 
     vcpu->arch.cpuid_entries[i].ebx = cpuid_entries[i].ebx; 
     vcpu->arch.cpuid_entries[i].ecx = cpuid_entries[i].ecx; 
     vcpu->arch.cpuid_entries[i].edx = cpuid_entries[i].edx; 
     vcpu->arch.cpuid_entries[i].index = 0; 
     vcpu->arch.cpuid_entries[i].flags = 0; 
     vcpu->arch.cpuid_entries[i].padding[0] = 0; 
     vcpu->arch.cpuid_entries[i].padding[1] = 0; 
     vcpu->arch.cpuid_entries[i].padding[2] = 0; 
    } 
    vcpu->arch.cpuid_nent = cpuid->nent; 
    cpuid_fix_nx_cap(vcpu); 
    kvm_apic_set_version(vcpu); 
    kvm_x86_ops->cpuid_update(vcpu); 
    r = kvm_update_cpuid(vcpu); 

out: 
    vfree(cpuid_entries); 
    return r; 
} 

int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu, 
        struct kvm_cpuid2 *cpuid, 
        struct kvm_cpuid_entry2 __user *entries) 
{ 
    int r; 

    r = -E2BIG; 
    if (cpuid->nent > KVM_MAX_CPUID_ENTRIES) 
     goto out; 
    r = -EFAULT; 
    if (copy_from_user(&vcpu->arch.cpuid_entries, entries, 
       cpuid->nent * sizeof(struct kvm_cpuid_entry2))) 
     goto out; 
    vcpu->arch.cpuid_nent = cpuid->nent; 
    kvm_apic_set_version(vcpu); 
    kvm_x86_ops->cpuid_update(vcpu); 
    r = kvm_update_cpuid(vcpu); 
out: 
    return r; 
} 

int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu, 
        struct kvm_cpuid2 *cpuid, 
        struct kvm_cpuid_entry2 __user *entries) 
{ 
    int r; 

    r = -E2BIG; 
    if (cpuid->nent < vcpu->arch.cpuid_nent) 
     goto out; 
    r = -EFAULT; 
    if (copy_to_user(entries, &vcpu->arch.cpuid_entries, 
      vcpu->arch.cpuid_nent * sizeof(struct kvm_cpuid_entry2))) 
     goto out; 
    return 0; 

out: 
    cpuid->nent = vcpu->arch.cpuid_nent; 
    return r; 
} 

static void cpuid_mask(u32 *word, int wordnum) 
{ 
    *word &= boot_cpu_data.x86_capability[wordnum]; 
} 

static void do_cpuid_1_ent(struct kvm_cpuid_entry2 *entry, u32 function, 
       u32 index) 
{ 
    entry->function = function; 
    entry->index = index; 
    cpuid_count(entry->function, entry->index, 
      &entry->eax, &entry->ebx, &entry->ecx, &entry->edx); 
    entry->flags = 0; 
} 

static int __do_cpuid_ent_emulated(struct kvm_cpuid_entry2 *entry, 
        u32 func, u32 index, int *nent, int maxnent) 
{ 
    switch (func) { 
    case 0: 
     entry->eax = 1;  /* only one leaf currently */ 
     ++*nent; 
     break; 
    case 1: 
     entry->ecx = F(MOVBE); 
     ++*nent; 
     break; 
    default: 
     break; 
    } 

    entry->function = func; 
    entry->index = index; 

    return 0; 
} 

static inline int __do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 function, 
       u32 index, int *nent, int maxnent) 
{ 
    int r; 
    unsigned f_nx = is_efer_nx() ? F(NX) : 0; 
#ifdef CONFIG_X86_64 
    unsigned f_gbpages = (kvm_x86_ops->get_lpage_level() == PT_PDPE_LEVEL) 
       ? F(GBPAGES) : 0; 
    unsigned f_lm = F(LM); 
#else 
    unsigned f_gbpages = 0; 
    unsigned f_lm = 0; 
#endif 
    unsigned f_rdtscp = kvm_x86_ops->rdtscp_supported() ? F(RDTSCP) : 0; 
    unsigned f_invpcid = kvm_x86_ops->invpcid_supported() ? F(INVPCID) : 0; 
    unsigned f_mpx = kvm_mpx_supported() ? F(MPX) : 0; 
    unsigned f_xsaves = kvm_x86_ops->xsaves_supported() ? F(XSAVES) : 0; 

    /* cpuid 1.edx */ 
    const u32 kvm_cpuid_1_edx_x86_features = 
     F(FPU) | F(VME) | F(DE) | F(PSE) | 
     F(TSC) | F(MSR) | F(PAE) | F(MCE) | 
     F(CX8) | F(APIC) | 0 /* Reserved */ | F(SEP) | 
     F(MTRR) | F(PGE) | F(MCA) | F(CMOV) | 
     F(PAT) | F(PSE36) | 0 /* PSN */ | F(CLFLUSH) | 
     0 /* Reserved, DS, ACPI */ | F(MMX) | 
     F(FXSR) | F(XMM) | F(XMM2) | F(SELFSNOOP) | 
     0 /* HTT, TM, Reserved, PBE */; 
    /* cpuid 0x80000001.edx */ 
    const u32 kvm_cpuid_8000_0001_edx_x86_features = 
     F(FPU) | F(VME) | F(DE) | F(PSE) | 
     F(TSC) | F(MSR) | F(PAE) | F(MCE) | 
     F(CX8) | F(APIC) | 0 /* Reserved */ | F(SYSCALL) | 
     F(MTRR) | F(PGE) | F(MCA) | F(CMOV) | 
     F(PAT) | F(PSE36) | 0 /* Reserved */ | 
     f_nx | 0 /* Reserved */ | F(MMXEXT) | F(MMX) | 
     F(FXSR) | F(FXSR_OPT) | f_gbpages | f_rdtscp | 
     0 /* Reserved */ | f_lm | F(3DNOWEXT) | F(3DNOW); 
    /* cpuid 1.ecx */ 
    const u32 kvm_cpuid_1_ecx_x86_features = 
     /* NOTE: MONITOR (and MWAIT) are emulated as NOP, 
     * but *not* advertised to guests via CPUID ! */ 
     F(XMM3) | F(PCLMULQDQ) | 0 /* DTES64, MONITOR */ | 
     0 /* DS-CPL, VMX, SMX, EST */ | 
     0 /* TM2 */ | F(SSSE3) | 0 /* CNXT-ID */ | 0 /* Reserved */ | 
     F(FMA) | F(CX16) | 0 /* xTPR Update, PDCM */ | 
     F(PCID) | 0 /* Reserved, DCA */ | F(XMM4_1) | 
     F(XMM4_2) | F(X2APIC) | F(MOVBE) | F(POPCNT) | 
     0 /* Reserved*/ | F(AES) | F(XSAVE) | 0 /* OSXSAVE */ | F(AVX) | 
     F(F16C) | F(RDRAND); 
    /* cpuid 0x80000001.ecx */ 
    const u32 kvm_cpuid_8000_0001_ecx_x86_features = 
     F(LAHF_LM) | F(CMP_LEGACY) | 0 /*SVM*/ | 0 /* ExtApicSpace */ | 
     F(CR8_LEGACY) | F(ABM) | F(SSE4A) | F(MISALIGNSSE) | 
     F(3DNOWPREFETCH) | F(OSVW) | 0 /* IBS */ | F(XOP) | 
     0 /* SKINIT, WDT, LWP */ | F(FMA4) | F(TBM); 

    /* cpuid 0xC0000001.edx */ 
    const u32 kvm_cpuid_C000_0001_edx_x86_features = 
     F(XSTORE) | F(XSTORE_EN) | F(XCRYPT) | F(XCRYPT_EN) | 
     F(ACE2) | F(ACE2_EN) | F(PHE) | F(PHE_EN) | 
     F(PMM) | F(PMM_EN); 

    /* cpuid 7.0.ebx */ 
    const u32 kvm_cpuid_7_0_ebx_x86_features = 
     F(FSGSBASE) | F(BMI1) | F(HLE) | F(AVX2) | F(SMEP) | 
     F(BMI2) | F(ERMS) | f_invpcid | F(RTM) | f_mpx | F(RDSEED) | 
     F(ADX) | F(SMAP) | F(AVX512IFMA) | F(AVX512F) | F(AVX512PF) | 
     F(AVX512ER) | F(AVX512CD) | F(CLFLUSHOPT) | F(CLWB) | F(AVX512DQ) | 
     F(SHA_NI) | F(AVX512BW) | F(AVX512VL); 

    /* cpuid 0xD.1.eax */ 
    const u32 kvm_cpuid_D_1_eax_x86_features = 
     F(XSAVEOPT) | F(XSAVEC) | F(XGETBV1) | f_xsaves; 

    /* cpuid 7.0.ecx*/ 
    const u32 kvm_cpuid_7_0_ecx_x86_features = 
     F(AVX512VBMI) | F(LA57) | F(PKU) | 
     0 /*OSPKE*/ | F(AVX512_VPOPCNTDQ); 

    /* cpuid 7.0.edx*/ 
    const u32 kvm_cpuid_7_0_edx_x86_features = 
     KF(AVX512_4VNNIW) | KF(AVX512_4FMAPS); 

    /* all calls to cpuid_count() should be made on the same cpu */ 
    get_cpu(); 

    r = -E2BIG; 

    if (*nent >= maxnent) 
     goto out; 

    do_cpuid_1_ent(entry, function, index); 
    ++*nent; 

    switch (function) { 
    case 0: 
     entry->eax = min(entry->eax, (u32)0xd); 
     break; 
    case 1: 
     entry->edx &= kvm_cpuid_1_edx_x86_features; 
     cpuid_mask(&entry->edx, CPUID_1_EDX); 
     entry->ecx &= kvm_cpuid_1_ecx_x86_features; 
     cpuid_mask(&entry->ecx, CPUID_1_ECX); 
     /* we support x2apic emulation even if host does not support 
     * it since we emulate x2apic in software */ 
     entry->ecx |= F(X2APIC); 
     break; 
    /* function 2 entries are STATEFUL. That is, repeated cpuid commands 
    * may return different values. This forces us to get_cpu() before 
    * issuing the first command, and also to emulate this annoying behavior 
    * in kvm_emulate_cpuid() using KVM_CPUID_FLAG_STATE_READ_NEXT */ 
    case 2: { 
     int t, times = entry->eax & 0xff; 

     entry->flags |= KVM_CPUID_FLAG_STATEFUL_FUNC; 
     entry->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT; 
     for (t = 1; t < times; ++t) { 
      if (*nent >= maxnent) 
       goto out; 

      do_cpuid_1_ent(&entry[t], function, 0); 
      entry[t].flags |= KVM_CPUID_FLAG_STATEFUL_FUNC; 
      ++*nent; 
     } 
     break; 
    } 
    /* function 4 has additional index. */ 
    case 4: { 
     int i, cache_type; 

     entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX; 
     /* read more entries until cache_type is zero */ 
     for (i = 1; ; ++i) { 
      if (*nent >= maxnent) 
       goto out; 

      cache_type = entry[i - 1].eax & 0x1f; 
      if (!cache_type) 
       break; 
      do_cpuid_1_ent(&entry[i], function, i); 
      entry[i].flags |= 
        KVM_CPUID_FLAG_SIGNIFCANT_INDEX; 
      ++*nent; 
     } 
     break; 
    } 
    case 6: /* Thermal management */ 
     entry->eax = 0x4; /* allow ARAT */ 
     entry->ebx = 0; 
     entry->ecx = 0; 
     entry->edx = 0; 
     break; 
    case 7: { 
     entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX; 
     /* Mask ebx against host capability word 9 */ 
     if (index == 0) { 
      entry->ebx &= kvm_cpuid_7_0_ebx_x86_features; 
      cpuid_mask(&entry->ebx, CPUID_7_0_EBX); 
      // TSC_ADJUST is emulated 
      entry->ebx |= F(TSC_ADJUST); 
      entry->ecx &= kvm_cpuid_7_0_ecx_x86_features; 
      cpuid_mask(&entry->ecx, CPUID_7_ECX); 
      /* PKU is not yet implemented for shadow paging. */ 
      if (!tdp_enabled || !boot_cpu_has(X86_FEATURE_OSPKE)) 
       entry->ecx &= ~F(PKU); 
      entry->edx &= kvm_cpuid_7_0_edx_x86_features; 
      entry->edx &= get_scattered_cpuid_leaf(7, 0, CPUID_EDX); 
     } else { 
      entry->ebx = 0; 
      entry->ecx = 0; 
      entry->edx = 0; 
     } 
     entry->eax = 0; 
     break; 
    } 
    case 9: 
     break; 
    case 0xa: { /* Architectural Performance Monitoring */ 
     struct x86_pmu_capability cap; 
     union cpuid10_eax eax; 
     union cpuid10_edx edx; 

     perf_get_x86_pmu_capability(&cap); 

     /* 
     * Only support guest architectural pmu on a host 
     * with architectural pmu. 
     */ 
     if (!cap.version) 
      memset(&cap, 0, sizeof(cap)); 

     eax.split.version_id = min(cap.version, 2); 
     eax.split.num_counters = cap.num_counters_gp; 
     eax.split.bit_width = cap.bit_width_gp; 
     eax.split.mask_length = cap.events_mask_len; 

     edx.split.num_counters_fixed = cap.num_counters_fixed; 
     edx.split.bit_width_fixed = cap.bit_width_fixed; 
     edx.split.reserved = 0; 

     entry->eax = eax.full; 
     entry->ebx = cap.events_mask; 
     entry->ecx = 0; 
     entry->edx = edx.full; 
     break; 
    } 
    /* function 0xb has additional index. */ 
    case 0xb: { 
     int i, level_type; 

     entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX; 
     /* read more entries until level_type is zero */ 
     for (i = 1; ; ++i) { 
      if (*nent >= maxnent) 
       goto out; 

      level_type = entry[i - 1].ecx & 0xff00; 
      if (!level_type) 
       break; 
      do_cpuid_1_ent(&entry[i], function, i); 
      entry[i].flags |= 
        KVM_CPUID_FLAG_SIGNIFCANT_INDEX; 
      ++*nent; 
     } 
     break; 
    } 
    case 0xd: { 
     int idx, i; 
     u64 supported = kvm_supported_xcr0(); 

     entry->eax &= supported; 
     entry->ebx = xstate_required_size(supported, false); 
     entry->ecx = entry->ebx; 
     entry->edx &= supported >> 32; 
     entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX; 
     if (!supported) 
      break; 

     for (idx = 1, i = 1; idx < 64; ++idx) { 
      u64 mask = ((u64)1 << idx); 
      if (*nent >= maxnent) 
       goto out; 

      do_cpuid_1_ent(&entry[i], function, idx); 
      if (idx == 1) { 
       entry[i].eax &= kvm_cpuid_D_1_eax_x86_features; 
       cpuid_mask(&entry[i].eax, CPUID_D_1_EAX); 
       entry[i].ebx = 0; 
       if (entry[i].eax & (F(XSAVES)|F(XSAVEC))) 
        entry[i].ebx = 
         xstate_required_size(supported, 
            true); 
      } else { 
       if (entry[i].eax == 0 || !(supported & mask)) 
        continue; 
       if (WARN_ON_ONCE(entry[i].ecx & 1)) 
        continue; 
      } 
      entry[i].ecx = 0; 
      entry[i].edx = 0; 
      entry[i].flags |= 
        KVM_CPUID_FLAG_SIGNIFCANT_INDEX; 
      ++*nent; 
      ++i; 
     } 
     break; 
    } 
    case KVM_CPUID_SIGNATURE: { 
     static const char signature[12] = "KVMKVMKVM\0\0"; 
     const u32 *sigptr = (const u32 *)signature; 
     entry->eax = KVM_CPUID_FEATURES; 
     entry->ebx = sigptr[0]; 
     entry->ecx = sigptr[1]; 
     entry->edx = sigptr[2]; 
     break; 
    } 
    case KVM_CPUID_FEATURES: 
     entry->eax = (1 << KVM_FEATURE_CLOCKSOURCE) | 
       (1 << KVM_FEATURE_NOP_IO_DELAY) | 
       (1 << KVM_FEATURE_CLOCKSOURCE2) | 
       (1 << KVM_FEATURE_ASYNC_PF) | 
       (1 << KVM_FEATURE_PV_EOI) | 
       (1 << KVM_FEATURE_CLOCKSOURCE_STABLE_BIT) | 
       (1 << KVM_FEATURE_PV_UNHALT); 

     if (sched_info_on()) 
      entry->eax |= (1 << KVM_FEATURE_STEAL_TIME); 

     entry->ebx = 0; 
     entry->ecx = 0; 
     entry->edx = 0; 
     break; 
    case 0x80000000: 
     entry->eax = min(entry->eax, 0x8000001a); 
     break; 
    case 0x80000001: 
     entry->edx &= kvm_cpuid_8000_0001_edx_x86_features; 
     cpuid_mask(&entry->edx, CPUID_8000_0001_EDX); 
     entry->ecx &= kvm_cpuid_8000_0001_ecx_x86_features; 
     cpuid_mask(&entry->ecx, CPUID_8000_0001_ECX); 
     break; 
    case 0x80000007: /* Advanced power management */ 
     /* invariant TSC is CPUID.80000007H:EDX[8] */ 
     entry->edx &= (1 << 8); 
     /* mask against host */ 
     entry->edx &= boot_cpu_data.x86_power; 
     entry->eax = entry->ebx = entry->ecx = 0; 
     break; 
    case 0x80000008: { 
     unsigned g_phys_as = (entry->eax >> 16) & 0xff; 
     unsigned virt_as = max((entry->eax >> 8) & 0xff, 48U); 
     unsigned phys_as = entry->eax & 0xff; 

     if (!g_phys_as) 
      g_phys_as = phys_as; 
     entry->eax = g_phys_as | (virt_as << 8); 
     entry->ebx = entry->edx = 0; 
     break; 
    } 
    case 0x80000019: 
     entry->ecx = entry->edx = 0; 
     break; 
    case 0x8000001a: 
     break; 
    case 0x8000001d: 
     break; 
    /*Add support for Centaur's CPUID instruction*/ 
    case 0xC0000000: 
     /*Just support up to 0xC0000004 now*/ 
     entry->eax = min(entry->eax, 0xC0000004); 
     break; 
    case 0xC0000001: 
     entry->edx &= kvm_cpuid_C000_0001_edx_x86_features; 
     cpuid_mask(&entry->edx, CPUID_C000_0001_EDX); 
     break; 
    case 3: /* Processor serial number */ 
    case 5: /* MONITOR/MWAIT */ 
    case 0xC0000002: 
    case 0xC0000003: 
    case 0xC0000004: 
    default: 
     entry->eax = entry->ebx = entry->ecx = entry->edx = 0; 
     break; 
    } 

    kvm_x86_ops->set_supported_cpuid(function, entry); 

    r = 0; 

out: 
    put_cpu(); 

    return r; 
} 

static int do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 func, 
      u32 idx, int *nent, int maxnent, unsigned int type) 
{ 
    if (type == KVM_GET_EMULATED_CPUID) 
     return __do_cpuid_ent_emulated(entry, func, idx, nent, maxnent); 

    return __do_cpuid_ent(entry, func, idx, nent, maxnent); 
} 

#undef F 

struct kvm_cpuid_param { 
    u32 func; 
    u32 idx; 
    bool has_leaf_count; 
    bool (*qualifier)(const struct kvm_cpuid_param *param); 
}; 

static bool is_centaur_cpu(const struct kvm_cpuid_param *param) 
{ 
    return boot_cpu_data.x86_vendor == X86_VENDOR_CENTAUR; 
} 

static bool sanity_check_entries(struct kvm_cpuid_entry2 __user *entries, 
       __u32 num_entries, unsigned int ioctl_type) 
{ 
    int i; 
    __u32 pad[3]; 

    if (ioctl_type != KVM_GET_EMULATED_CPUID) 
     return false; 

    /* 
    * We want to make sure that ->padding is being passed clean from 
    * userspace in case we want to use it for something in the future. 
    * 
    * Sadly, this wasn't enforced for KVM_GET_SUPPORTED_CPUID and so we 
    * have to give ourselves satisfied only with the emulated side. /me 
    * sheds a tear. 
    */ 
    for (i = 0; i < num_entries; i++) { 
     if (copy_from_user(pad, entries[i].padding, sizeof(pad))) 
      return true; 

     if (pad[0] || pad[1] || pad[2]) 
      return true; 
    } 
    return false; 
} 

int kvm_dev_ioctl_get_cpuid(struct kvm_cpuid2 *cpuid, 
       struct kvm_cpuid_entry2 __user *entries, 
       unsigned int type) 
{ 
    struct kvm_cpuid_entry2 *cpuid_entries; 
    int limit, nent = 0, r = -E2BIG, i; 
    u32 func; 
    static const struct kvm_cpuid_param param[] = { 
     { .func = 0, .has_leaf_count = true }, 
     { .func = 0x80000000, .has_leaf_count = true }, 
     { .func = 0xC0000000, .qualifier = is_centaur_cpu, .has_leaf_count = true }, 
     { .func = KVM_CPUID_SIGNATURE }, 
     { .func = KVM_CPUID_FEATURES }, 
    }; 

    if (cpuid->nent < 1) 
     goto out; 
    if (cpuid->nent > KVM_MAX_CPUID_ENTRIES) 
     cpuid->nent = KVM_MAX_CPUID_ENTRIES; 

    if (sanity_check_entries(entries, cpuid->nent, type)) 
     return -EINVAL; 

    r = -ENOMEM; 
    cpuid_entries = vzalloc(sizeof(struct kvm_cpuid_entry2) * cpuid->nent); 
    if (!cpuid_entries) 
     goto out; 

    r = 0; 
    for (i = 0; i < ARRAY_SIZE(param); i++) { 
     const struct kvm_cpuid_param *ent = &param[i]; 

     if (ent->qualifier && !ent->qualifier(ent)) 
      continue; 

     r = do_cpuid_ent(&cpuid_entries[nent], ent->func, ent->idx, 
       &nent, cpuid->nent, type); 

     if (r) 
      goto out_free; 

     if (!ent->has_leaf_count) 
      continue; 

     limit = cpuid_entries[nent - 1].eax; 
     for (func = ent->func + 1; func <= limit && nent < cpuid->nent && r == 0; ++func) 
      r = do_cpuid_ent(&cpuid_entries[nent], func, ent->idx, 
        &nent, cpuid->nent, type); 

     if (r) 
      goto out_free; 
    } 

    r = -EFAULT; 
    if (copy_to_user(entries, cpuid_entries, 
      nent * sizeof(struct kvm_cpuid_entry2))) 
     goto out_free; 
    cpuid->nent = nent; 
    r = 0; 

out_free: 
    vfree(cpuid_entries); 
out: 
    return r; 
} 

static int move_to_next_stateful_cpuid_entry(struct kvm_vcpu *vcpu, int i) 
{ 
    struct kvm_cpuid_entry2 *e = &vcpu->arch.cpuid_entries[i]; 
    struct kvm_cpuid_entry2 *ej; 
    int j = i; 
    int nent = vcpu->arch.cpuid_nent; 

    e->flags &= ~KVM_CPUID_FLAG_STATE_READ_NEXT; 
    /* when no next entry is found, the current entry[i] is reselected */ 
    do { 
     j = (j + 1) % nent; 
     ej = &vcpu->arch.cpuid_entries[j]; 
    } while (ej->function != e->function); 

    ej->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT; 

    return j; 
} 

/* find an entry with matching function, matching index (if needed), and that 
* should be read next (if it's stateful) */ 
static int is_matching_cpuid_entry(struct kvm_cpuid_entry2 *e, 
    u32 function, u32 index) 
{ 
    if (e->function != function) 
     return 0; 
    if ((e->flags & KVM_CPUID_FLAG_SIGNIFCANT_INDEX) && e->index != index) 
     return 0; 
    if ((e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC) && 
     !(e->flags & KVM_CPUID_FLAG_STATE_READ_NEXT)) 
     return 0; 
    return 1; 
} 

struct kvm_cpuid_entry2 *kvm_find_cpuid_entry(struct kvm_vcpu *vcpu, 
          u32 function, u32 index) 
{ 
    int i; 
    struct kvm_cpuid_entry2 *best = NULL; 

    for (i = 0; i < vcpu->arch.cpuid_nent; ++i) { 
     struct kvm_cpuid_entry2 *e; 

     e = &vcpu->arch.cpuid_entries[i]; 
     if (is_matching_cpuid_entry(e, function, index)) { 
      if (e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC) 
       move_to_next_stateful_cpuid_entry(vcpu, i); 
      best = e; 
      break; 
     } 
    } 
    return best; 
} 
EXPORT_SYMBOL_GPL(kvm_find_cpuid_entry); 

/* 
* If no match is found, check whether we exceed the vCPU's limit 
* and return the content of the highest valid _standard_ leaf instead. 
* This is to satisfy the CPUID specification. 
*/ 
static struct kvm_cpuid_entry2* check_cpuid_limit(struct kvm_vcpu *vcpu, 
                u32 function, u32 index) 
{ 
    struct kvm_cpuid_entry2 *maxlevel; 

    maxlevel = kvm_find_cpuid_entry(vcpu, function & 0x80000000, 0); 
    if (!maxlevel || maxlevel->eax >= function) 
     return NULL; 
    if (function & 0x80000000) { 
     maxlevel = kvm_find_cpuid_entry(vcpu, 0, 0); 
     if (!maxlevel) 
      return NULL; 
    } 
    return kvm_find_cpuid_entry(vcpu, maxlevel->eax, index); 
} 

bool kvm_cpuid(struct kvm_vcpu *vcpu, u32 *eax, u32 *ebx, 
      u32 *ecx, u32 *edx, bool check_limit) 
{ 
    u32 function = *eax, index = *ecx; 
    struct kvm_cpuid_entry2 *best; 
    bool entry_found = true; 

    best = kvm_find_cpuid_entry(vcpu, function, index); 

    if (!best) { 
     entry_found = false; 
     if (!check_limit) 
      goto out; 

     best = check_cpuid_limit(vcpu, function, index); 
    } 

out: 
    if (best) { 
     *eax = best->eax; 
     *ebx = best->ebx; 
     *ecx = best->ecx; 
     *edx = best->edx; 
    } else 
     *eax = *ebx = *ecx = *edx = 0; 
    trace_kvm_cpuid(function, *eax, *ebx, *ecx, *edx, entry_found); 
    return entry_found; 
} 
EXPORT_SYMBOL_GPL(kvm_cpuid); 

int kvm_emulate_cpuid(struct kvm_vcpu *vcpu) 
{ 
    u32 eax, ebx, ecx, edx; 

    if (cpuid_fault_enabled(vcpu) && !kvm_require_cpl(vcpu, 0)) 
     return 1; 

    eax = kvm_register_read(vcpu, VCPU_REGS_RAX); 
    ecx = kvm_register_read(vcpu, VCPU_REGS_RCX); 
    kvm_cpuid(vcpu, &eax, &ebx, &ecx, &edx, true); 
    kvm_register_write(vcpu, VCPU_REGS_RAX, eax); 
    kvm_register_write(vcpu, VCPU_REGS_RBX, ebx); 
    kvm_register_write(vcpu, VCPU_REGS_RCX, ecx); 
    kvm_register_write(vcpu, VCPU_REGS_RDX, edx); 
    return kvm_skip_emulated_instruction(vcpu); 
} 
EXPORT_SYMBOL_GPL(kvm_emulate_cpuid); 

Ich möchte den Code hinzufügen/bearbeiten in Ihrem Linux-Baum (Iv geklont Kernel von Github), erstellen Sie den Kernel und Boot in den modifizierten Kernel KVM und einen Benutzermodus c Programm wie

laufen
#include <stdio.h> 
#include <cpuid.h> 
#include <stdint.h> 

    int 
    main(int argc, char **argv) 
    { 
    uint32_t eax, ebx, ecx, edx; 

    __cpuid(0x0, eax, ebx, ecx, edx); 

    printf("CPUID(0x0).EAX=0x%x\n", eax); 
    printf("CPUID(0x0).EBX=0x%x\n", ebx); 
    printf("CPUID(0x0).ECX=0x%x\n", ecx); 
    printf("CPUID(0x0).EDX=0x%x\n", edx); 

    return 0; 
    } 

Um eine Ausgabe wie

CPUID(0x0) Brand String = GenuineIntel 
CPUID(0x4FFFFFFF) 
CPUID(0x0) Brand String = SOME TEXT 
CPUID(0x4FFFFFFF) 

Antwort

2

Der Kernel implementieren keine spezifische CPUID zu bekommen Emulation selbst; das wird von KVM-Clients wie QEMU implementiert. Zum Beispiel here's the relevant code in QEMU, die bereits eine Reihe von fiktiven Prozessormarken wie "QEMU Virtual CPU" implementiert.

Außerdem wirkt sich die KVM-CPUID-Emulation nur auf virtuelle Maschinen aus, die von einem Computer mit diesem Kernel gehostet werden. Es wirkt sich nicht auf normale Benutzerbereichsanwendungen auf diesem Computer aus.

+0

Ich habe einige Änderungen im letzten Teil meiner Frage vorgenommen – raxx

Verwandte Themen