2016-03-29 7 views
2

ich unter dem folgenden Code ein Modell erstellt haben, weitergeben müssen:Wie man Bilder für die Einstufung zum Modell in Tensorflow

# Deep Learning  
# In[25]: 

from __future__ import print_function 
import numpy as np 
import tensorflow as tf 
from six.moves import cPickle as pickle 
from six.moves import range 


# In[37]: 

pickle_file = 'notMNIST.pickle' 

with open(pickle_file, 'rb') as f: 
    save = pickle.load(f) 
    train_dataset = save['train_dataset'] 
    train_labels = save['train_labels'] 
    valid_dataset = save['valid_dataset'] 
    valid_labels = save['valid_labels'] 
    test_dataset = save['test_dataset'] 
    test_labels = save['test_labels'] 
    del save # hint to help gc free up memory 
    print('Training set', train_dataset.shape, train_labels.shape) 
    print('Validation set', valid_dataset.shape, valid_labels.shape) 
    print('Test set', test_dataset.shape, test_labels.shape) 
    print(test_labels) 


# Reformat into a TensorFlow-friendly shape: 
# - convolutions need the image data formatted as a cube (width by height by #channels) 
# - labels as float 1-hot encodings. 

# In[38]: 

image_size = 28 
num_labels = 10 
num_channels = 1 # grayscale 

import numpy as np 

def reformat(dataset, labels): 
    dataset = dataset.reshape(
    (-1, image_size, image_size, num_channels)).astype(np.float32) 
    #print(np.arange(num_labels)) 
    labels = (np.arange(num_labels) == labels[:,None]).astype(np.float32) 
    #print(labels[0,:]) 
    print(labels[0]) 
    return dataset, labels 
train_dataset, train_labels = reformat(train_dataset, train_labels) 
valid_dataset, valid_labels = reformat(valid_dataset, valid_labels) 
test_dataset, test_labels = reformat(test_dataset, test_labels) 
print('Training set', train_dataset.shape, train_labels.shape) 
print('Validation set', valid_dataset.shape, valid_labels.shape) 
print('Test set', test_dataset.shape, test_labels.shape) 
#print(labels[0]) 


# In[39]: 

def accuracy(predictions, labels): 
    return (100.0 * np.sum(np.argmax(predictions, 1) == np.argmax(labels, 1)) 
     /predictions.shape[0]) 


# Let's build a small network with two convolutional layers, followed by one fully connected layer. Convolutional networks are more expensive computationally, so we'll limit its depth and number of fully connected nodes. 

# In[47]: 

batch_size = 16 
patch_size = 5 
depth = 16 
num_hidden = 64 

graph = tf.Graph() 

with graph.as_default(): 

    # Input data. 
    tf_train_dataset = tf.placeholder(
    tf.float32, shape=(batch_size, image_size, image_size, num_channels)) 
    tf_train_labels = tf.placeholder(tf.float32, shape=(batch_size, num_labels)) 
    tf_valid_dataset = tf.constant(valid_dataset) 
    tf_test_dataset = tf.constant(test_dataset) 

    # Variables. 
    layer1_weights = tf.Variable(tf.truncated_normal(
     [patch_size, patch_size, num_channels, depth], stddev=0.1),name="layer1_weights") 
    layer1_biases = tf.Variable(tf.zeros([depth]),name = "layer1_biases") 
    layer2_weights = tf.Variable(tf.truncated_normal(
     [patch_size, patch_size, depth, depth], stddev=0.1),name = "layer2_weights") 
    layer2_biases = tf.Variable(tf.constant(1.0, shape=[depth]),name ="layer2_biases") 
    layer3_weights = tf.Variable(tf.truncated_normal(
     [image_size // 4 * image_size // 4 * depth, num_hidden], stddev=0.1),name="layer3_biases") 
    layer3_biases = tf.Variable(tf.constant(1.0, shape=[num_hidden]),name = "layer3_biases") 
    layer4_weights = tf.Variable(tf.truncated_normal(
     [num_hidden, num_labels], stddev=0.1),name = "layer4_weights") 
    layer4_biases = tf.Variable(tf.constant(1.0, shape=[num_labels]),name = "layer4_biases") 

    # Model. 
    def model(data): 
    conv = tf.nn.conv2d(data, layer1_weights, [1, 2, 2, 1], padding='SAME') 
    hidden = tf.nn.relu(conv + layer1_biases) 
    conv = tf.nn.conv2d(hidden, layer2_weights, [1, 2, 2, 1], padding='SAME') 
    hidden = tf.nn.relu(conv + layer2_biases) 
    shape = hidden.get_shape().as_list() 
    reshape = tf.reshape(hidden, [shape[0], shape[1] * shape[2] * shape[3]]) 
    hidden = tf.nn.relu(tf.matmul(reshape, layer3_weights) + layer3_biases) 
    return tf.matmul(hidden, layer4_weights) + layer4_biases 

    # Training computation. 
    logits = model(tf_train_dataset) 
    loss = tf.reduce_mean(
    tf.nn.softmax_cross_entropy_with_logits(logits, tf_train_labels)) 

    # Optimizer. 
    optimizer = tf.train.GradientDescentOptimizer(0.05).minimize(loss) 

    # Predictions for the training, validation, and test data. 
    train_prediction = tf.nn.softmax(logits) 
    valid_prediction = tf.nn.softmax(model(tf_valid_dataset)) 
    test_prediction = tf.nn.softmax(model(tf_test_dataset)) 


# In[48]: 

num_steps = 1001 
#saver = tf.train.Saver() 
with tf.Session(graph=graph) as session: 
    tf.initialize_all_variables().run() 
    print('Initialized') 
    for step in range(num_steps): 
    offset = (step * batch_size) % (train_labels.shape[0] - batch_size) 
    batch_data = train_dataset[offset:(offset + batch_size), :, :, :] 
    batch_labels = train_labels[offset:(offset + batch_size), :] 
    feed_dict = {tf_train_dataset : batch_data, tf_train_labels : batch_labels} 
    _, l, predictions = session.run(
     [optimizer, loss, train_prediction], feed_dict=feed_dict) 
    if (step % 50 == 0): 
     print('Minibatch loss at step %d: %f' % (step, l)) 
     print('Minibatch accuracy: %.1f%%' % accuracy(predictions, batch_labels)) 
     print('Validation accuracy: %.1f%%' % accuracy(
     valid_prediction.eval(), valid_labels)) 
    print('Test accuracy: %.1f%%' % accuracy(test_prediction.eval(), test_labels)) 
    save_path = tf.train.Saver().save(session, "/tmp/model.ckpt") 
    print("Model saved in file: %s" % save_path) 

ich das Modell gespeichert haben und schrieb das Modell wieder herzustellen versuche eine andere Python-Programm, wo ich und benutze es für die Klassifizierung meiner Bilder, aber ich bin nicht in der Lage, einen 4-ten Tensor des Bildes zu erstellen, den ich als Eingabe an das Modell weitergeben muss.

Der Code der Python-Datei ist wie folgt:

# In[8]: 

from __future__ import print_function 
import numpy as np 
import tensorflow as tf 
from six.moves import cPickle as pickle 
from six.moves import range 
from scipy import ndimage 

# In[9]: 

image_size = 28 
num_labels = 10 
num_channels = 1 # grayscale 
import numpy as np 


# In[10]: 

def accuracy(predictions, labels): 
    return (100.0 * np.sum(np.argmax(predictions, 1) == np.argmax(labels, 1)) 
     /predictions.shape[0]) 


# In[15]: 

batch_size = 16 
patch_size = 5 
depth = 16 
num_hidden = 64 
pixel_depth =255 

graph = tf.Graph() 

with graph.as_default(): 

    '''# Input data. 
    tf_train_dataset = tf.placeholder(
    tf.float32, shape=(batch_size, image_size, image_size, num_channels)) 
    tf_train_labels = tf.placeholder(tf.float32, shape=(batch_size, num_labels)) 
    #tf_valid_dataset = tf.constant(valid_dataset) 
    tf_test_dataset = tf.constant(test_dataset)''' 
    tf_train_dataset = tf.placeholder(
    tf.float32, shape=(batch_size, image_size, image_size, num_channels)) 
    # Variables. 
    layer1_weights = tf.Variable(tf.truncated_normal(
     [patch_size, patch_size, num_channels, depth], stddev=0.1),name="layer1_weights") 
    layer1_biases = tf.Variable(tf.zeros([depth]),name = "layer1_biases") 
    layer2_weights = tf.Variable(tf.truncated_normal(
     [patch_size, patch_size, depth, depth], stddev=0.1),name = "layer2_weights") 
    layer2_biases = tf.Variable(tf.constant(1.0, shape=[depth]),name ="layer2_biases") 
    layer3_weights = tf.Variable(tf.truncated_normal(
     [image_size // 4 * image_size // 4 * depth, num_hidden], stddev=0.1),name="layer3_biases") 
    layer3_biases = tf.Variable(tf.constant(1.0, shape=[num_hidden]),name = "layer3_biases") 
    layer4_weights = tf.Variable(tf.truncated_normal(
     [num_hidden, num_labels], stddev=0.1),name = "layer4_weights") 
    layer4_biases = tf.Variable(tf.constant(1.0, shape=[num_labels]),name = "layer4_biases") 
    saver = tf.train.Saver() 
    tf_ 
    # Model. 
    def model(data): 
    conv = tf.nn.conv2d(data, layer1_weights, [1, 2, 2, 1], padding='SAME') 
    hidden = tf.nn.relu(conv + layer1_biases) 
    conv = tf.nn.conv2d(hidden, layer2_weights, [1, 2, 2, 1], padding='SAME') 
    hidden = tf.nn.relu(conv + layer2_biases) 
    shape = hidden.get_shape().as_list() 
    reshape = tf.reshape(hidden, [shape[0], shape[1] * shape[2] * shape[3]]) 
    hidden = tf.nn.relu(tf.matmul(reshape, layer3_weights) + layer3_biases) 
    return tf.matmul(hidden, layer4_weights) + layer4_biases 

    valid_prediction = tf.nn.softmax(model(tf_valid_dataset)) 
    #test_prediction = tf.nn.softmax(model(tf_test_dataset)) 


# In[19]: 

with tf.Session(graph=graph) as sess: 
    # Restore variables from disk. 
    saver.restore(sess, "/tmp/model.ckpt") 
    print("Model restored.") 
    image_data = (ndimage.imread('notMNIST_small/A/QXJyaWJhQXJyaWJhU3RkLm90Zg==.png').astype(float) - 
        pixel_depth/2)/pixel_depth 
    data = [0:,image_data:,] 
    sess.run(valid_prediction,feed_dict={tf_valid_dataset:data}) 
    # Do some work with the model 

Wie Sie in ln [19] i mein Modell restauriert und will sehen, ein Bild, das das Muster vorbei eine 4d Tensor zu schaffen, Ich lese das Bild und versuche dann, es in einen 4d-Tensor zu konvertieren, aber der Ysntax zum Erstellen ist falsch in meinem Code und benötigt daher Hilfe bei der Korrektur.

Antwort

7

Angenommen, image_data ist ein Graustufen Bild, sollte es ein 2-D NumPy Array sein. Sie können es mit dem folgenden auf ein 4-D-Array konvertieren:

data = image_data[np.newaxis, ..., np.newaxis] 

Die np.newaxis fügen eine neue Dimension der Größe 1 in der ersten (Chargengröße) und letzten (Kanäle) Dimensionen. Es entspricht dem Folgenden mit np.expand_dims():

data = np.expand_dims(np.expand_dims(image_data, 0), -1) 

Auf der anderen Seite, wenn Sie mit RGB-Daten arbeiten, müssen Sie es konvertieren, das Modell zu passen. Sie könnten zum Beispiel einen Platzhalter für die Bildeingabe definieren:

input_placeholder = tf.placeholder(tf.float32, shape=[None, image_size, image_size, 3]) 
input_grayscale = tf.image.rgb_to_grayscale(input_placeholder) 

prediction = tf.nn.softmax(model(input_grayscale)) 

image_data = ... # Load from file 
data = image_data[np.newaxis, ...] # Only add a batch dimension. 

prediction_val = sess.run(prediction, feed_dict={input_placeholder: data}) 
+0

Dank für die Beantwortung mrry, i auf RGB-Bildern arbeiten würde jetzt versuchen, meine eigenen classsifer zu schaffen, so wie die Tensor Sie in diesem Fall erstellt oben zu schaffen , wenn du irgendwelche Hinweise geben kannst, wäre es wirklich hilfreich. – kkk

+0

Ich habe die Antwort mit einigen Vorschlägen für die Verwendung von RGB-Bildern aktualisiert. Beachten Sie, dass Ihr Modell einen einzelnen Eingangskanal annimmt. Daher müssen Sie zuerst die Eingabe in Graustufen konvertieren. Sie können die erste Ebene ändern, um Bilder mit 3 Kanälen zu akzeptieren .... – mrry

Verwandte Themen